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ABSTRACT
Approximate expressions are derived for free-free, bound-free, and Thomson cross-sections of photons by
gaseous matter in the presence of superstrong magnetic fields. For photons in modes whose electric field polari-
zation is perpendicular to this magnetic field, the cross-section is reduced by approximately the squared ratio of
the photon frequency to the electron cyclotron frequency if this ratio is small.

Subject headings: neutron stars — opacities — plasmas — polarization

I. INTRODUCTION

The huge magnetic fields which thread neutron stars dominate the motion of electrons in the stellar surfaces.
In estimated surface fields H ~ 10*2-10'® gauss, fiwy = e#iH|m,c = 10*-10° ¢V, This is much greater than the
estimated thermal energies of surface electrons and X-rays in all known pulsars. In the presence of such strong
fields, the cross-sections for the Thomson, free-free, and bound-free transitions are greatly reduced over the field-
free values if the electric field vector E of the incident electromagnetic wave is perpendicular to H. This is because
a sufficiently strong magnetic field tends to confine the motion of electrons to that of H and suppresses their
response to any perpendicular force.

There are two independent modes for an electromagnetic wave in a magnetized plasma, viz., the ordinary (O)
mode and the extraordinary (X) mode. A detailed examination of the polarization of these two modes shows that
if o « wy and > the plasma frequency (4nn.e?/m,)*/2, then the E vector of the X-mode will essentially always
be perpendicular to H, and the E vector of the O-mode will be perpendicular to H for propagation along H but
becomes parallel to H for other directions of propagation (Canuto, Lodenquai, and Ruderman 1971). Therefore,
the X-mode photons generally have a much longer mean free path than O-mode photons and give the main
contribution to radiation transport in a neutron star surface.

When o « wy, the mean squared amplitude response of a free electron to an oscillating electric field perpen-
dicular to H is reduced by (w/wy)? from that when H = 0. This factor was used by us (Tsuruta et al. 1972) to
estimate the opacity and cooling rates of magnetized neutron stars. In the present paper we justify, for photons

with E perpendicular to H, the approximate relation between cross-sections with and without superstrong magnetic
fields:

o (H) ~ (w]wg)?s(0) ; w K oy . (H

The relationship of equation (1) holds for all the major processes contributing to photon opacity. In § I, we review
briefly the properties of an electron in a magnetic field. In §§ III, IV, and V we treat the Thomson, free-free, and
bound-free transitions, respectively, in superstrong magnetic fields (H > 102 gauss). In § VI we examine the
effects of the bound-bound transition on the radiative opacity.

In this paper and the previous one (Tsuruta et al. 1972) we neglect the contribution of electrons to energy trans-
port at the stellar surface. This mode of transport is unimportant in the nondegenerate surface layers of conven-
tional stars. But magnetized neutron stars can have energetic degenerate electrons extending right to the edge of
the star (Ruderman 1971, 1972). These would contribute to energy transport and increase our previously estimated
cooling rates.

* Most of this work was done when the author was at the Department of Physics, Columbia University and supported by a
grant from the National Science Foundation.

+ Work supported in part by the National Science Foundation.
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II. ELECTRON IN A MAGNETIC FIELD
The Schrédinger equation for an electron in a uniform, static magnetic field H is
—h? [1 2 ( a_l/.) + & 1 azlp} ifiwy O

- _ i B htadz fh o 1 2,2 — e =
2me pap Pap 822 +p2 a¢2 2 a¢+ Smepr‘ﬁ & Hl/’ E‘l’ (2)

in cylindrical polar coordinates (p, #, z). The magnetic field is assumed to be along the z-direction. The vector
potential is chosen to have components

Ay =3Hp, A, =A,=0; 3)

@ is the Dirac magnetic moment of the electron. The solution of equation (2) (neglecting the spin wave function,
which is separable) is (Landau and Lifshitz 1965)

ikz imo
s = i s Conn2P e 5EME (= ]+ 1,8) = 1, 5 @

where L is the normalization length along H. The parameter ¢ = (eH/2%c)p? = yp?; F(—n,, |m| + 1, £) is the con-
fluent hypergeometric function; m(=0, +1, +2,...) is the angular-momentum quantum number; n, is a positive
integer or zero. C,, , is a normalization constant given by

(m] + D(m| +2)---(m] + n,)

]Cﬂp;m‘z = Iml! ng! for n, # 0 R
1
lCo,mlz = W for n, = 0. (5)
The energy eigenvalues of equation (2) are
_ o lml w1 PP
Enp’m,k,g = th(np + § + 3 -+ 5 -+ E) + 2me s (6)

with ¢ = + 1 corresponding to electron spin parallel or antiparallel to the magnetic field; p, = #k is the electron
momentum along z, i.e., along the magnetic field. If m is negative or zero, the eigenvalues reduce to

E"m—[m]‘k,d = (no + %G + %)hwﬂ' + pzz/zme ’ (7)

which is independent of m:: all the states of zero and negative m are degenerate. The lowest energy state corresponds
ton, = 0, 0 = —1 in equation (7), i.e.,

Eo oimip, -1 = p2m, . (3)
In this case, the eigenfunction becomes
eliz e HImld . 2 ~&21ml/2 :
Po, - im1k = % (2m) 2 @n)2Co, _ e~ 22 = 10, —|m], k) . €)]

The first excited state has an energy fiwy above the ground state. This correspondston, = lorm =1 oro = 1.
If H ~ 10'2 gauss, then 7wy ~ 12 keV, which is much greater than the typical value of kT in the neutron-star
\ magnetosphere during radiative cooling. In the following, we shall assume therefore that the electrons always have
n, = 0, m = 0 or a negative integer, and o = —1, i.e., spin antiparalle] to H.

The electrons have a cylindrically symmetric probability distribution when n, = 0; its average radius for a
given angular momentum quantum number m is given by

pn = @lm| + D¥2pq, (10)

where p, = (fic/eH)'? is the minimum quantum-mechanical zero-point vibration amplitude transverse to H.

III. THOMSON SCATTERING

Thomson scattering in a magnetized plasma was treated in detail in a previous paper (Canuto et al. 1971). The
scattering cross-sections for the two modes of propagation were studied separately. If 8 is the angle between H
and the wave vector of the incident electromagnetic wave, we have, for 8§ — 0,

2

w w?
(wy + w)?

+ 4 sin? 9] > ox(0; H) ~ cTh[———- + 1 sin? 9] . (11

(wg — ‘*’)2

oo(0; H) =~ UTh[
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For 0 —> m/2,

oo(0; H) ~ og, sin® 4, og(8; H) ~ oTh{ + cos? 0] . (12)

(0 — @)?

In the above or, = (87/3)(e?/m.c*)? is the field-free Thomson cross-section. Equations (11) and (12) are valid if
wylw € 1, where w, is the plasma frequency. We then have, for the X-mode,

ox(H)[o(0) % (w/wy)? for wy » w, (13)

a reasonable approximation for all 6.

IV. FREE-FREE ABSORPTION
The total Hamiltonian of the system in this case can be conveniently regrouped as
.z , 1 1 N
(Zz T Pm2)1/2 - 2\:(22 + p2)1/2 - (22 x pﬁz)l/z] + Hy (14)

when the electron is under the influence of the magnetic field and also of the Coulomb field of an ion with charge
Z'e. Hy is the Hamiltonian of an electron in the magnetic field alone as given in equation (2). We define p; by

H=HH—'

n = (2m + 1)*2p, (15)
where 77 is an arbitrary constant. Hy, is the interaction Hamiltonian. For absorption or emission of a photon,
by an electron:

0T pwtat (16a)

where A, = c(2n#ijwV,)*'? and ¥V, is a normalization volume for photons; # = (p — ed/c) is the canonical momen-
tum of the electron in the magnetic field; e is the polarization unit vector of the photon. An equivalent form for
matrix elements between eigenstates of equations (4) and (6) and fw,; = E, — E, is

By = —eE(t)-r, (16b)

where E(t) is the electric field vector of the photon. In the case of the X-mode where E | H, we have H,,, =
—eE(t)p cos ¢. Since cE(t) = —0A(1)/ot = —iwA(t), where A(t) is the vector potential of the photon field, we
have for E | H the equivalent form

~ iw er
Hlnt =

p COS pe¥ivt a7n

To the lowest order, the matrix element for free-free transition in this case is

a1 feedo z 0, —|m| + 1, k'|p cos ¢|n,, —|m|, k"><n,, —|m|, k"|(Vi — V,) — Vz]0, —|ml, k>
* ¢ S nhwy + fw
<O —|ml + L, K|(Va = V,) = Valn,, —|m| + 1, k">¢ny, —|m] + 1, k"|p cos |0, —|m]|, k> 18)
nhfwy — hw
The unperturbed states |n,, m, k> are the eigenfunctions of Hy, of equation (4), and
Z'e? Z'e?
0= EE AR mem' (19)

Since we have assumed (w/w;) « 1, and w, appears in the denominator of M, as n fiwy, the leading term in the
summation over n, is the first term, with n, = 0. It is shown in Appendix A that

0, —|m| + 1, k"|p cos |n,, —|m|, k"> = 88y, o(|m|[¥)*2, (202)

Cn > - C —=Im 12
(ny, ~[m] + 1, k"|p cos 4|0, —m, k> = 8( . ‘”";1 - ') I npim™ (20b)
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where
J_no,lmllml = ]m]! for n, = 0 ,
= —(jm| — D! forn, =1, @2n
0 otherwise ,

y = eH[2kc, and C,, , are the normalization constants given in equation (5). We have then for M

ieA,

If ~
M= ke

2 :
() o, —al, 1V = ) = Va0, = Im.
=<0, —|m| + LK'|(Va — V,) = Val0, —|m| + 1, k)] - 22
Since 7/ was introduced as an arbitrary constant, we can choose it for convenience such that
<0, =|mj, K'|V,]0, —|m|, k> = <0, —[m|, K'| V|0, —|m|, k) = {k'[Valk) . 23)
The last step follows because ¥,; depends only upon z. Then from equation (23)
O, —lm| + LK|V,[0, —|m| + 1, k> = <0, —|m| + 1L, K'[VassalO, —|m| + 1, k> = <K'V sanl k>

with ém ~ 1. (24)
Therefore,

M~ % (‘ﬂyl)m [ Vs omlk> — K| VD] = ’%‘9 (’—”yll)“za—; KVl (25)

The integral in the matrix element,

Z ,62 @ ei(k’ -k

is just a Fourier-Bessel transform (Ryshik and Gradstein 1963):
@© eiAkz
f— W dZ = ZKO(p;Ak) 5 (27)

where Ky(x) is the modified Hankel function of zero index. We consider below only the two limiting cases of this
integral: (@) poAk > 1 and therefore ppAk = (2 + 1)Y2poAk > 1, the limit of infinite momentum transfer. In
this case

1/2
Kalpth) sz (557 ) exp (—omdh). (28)

(b) poAk « 1. In this case there exist two possibilities: (i) there is a range of values of i for which p5Ak « 1 and
(it) a range of values for which p;Ak > 1. When p,Ak « 1 and pzAk « 1 also,

Ko(pmlk) e — [m P’ﬁzAk + 0.577] : (29)

But for increasing values of m (and therefore 77), a value of 7 is reached such that p;Ak ~ 1 and above which
pnlAk > 1, achieving finally the asymptotic regime pzAk > 1 given by equation (28).
To calculate the cross-section we need the transition probability per unit time:

2
W= ZIMPp(E) (30)
where p(E;) is the density of final states per unit energy at E; in a superstrong magnetic field at fixed m and n,:
m,L
o) = 20 (3D
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where L is the plane-wave normalization length and p, the final momentum along z. For the regime p,Ak > 1,
we have from equations (25)—(28)

ied,Z’'e? Ak \12 _
Mt e — A (D)™ exp 1 @y eput (32)

The transition rate then is

_ An*Z %023 m,(po k) exp [—2(2m) Fp, AK]

4 21/2 VyL'}’pzwlmllm

, (33)

where «, = e?/fic is the fine-structure constant and V, is the photon normalization volume. The cross-section for
photon absorption by an electron in a given m state is found by dividing W by the flux of incident photons F =
¢/V, and multiplying by N(m), the total number of electrons in the mth state:

N(m)dm = NP(m)dm , (34)

where N is the total number of electrons and P(m)dm is the probability that the electron has angular momentum
between m and m -+ dm. Because of the symmetry of the wave functions it is convenient to choose the electron
normalization volume to be a cylinder of length L and radius R. Then

_ 27 pndpm wdm

P(m)dm = v N (35)
From equations (33)-(35) we obtain the partial cross-section from the state m:
271272030 3c2h Akn, exp [ —2(Q2|m|) 2p, Ak] { # \3/2
o f(m) ~ ! T 2p w2 : m, ’ (36)

where n, = N/(mR2L) is the electron number density. The total cross-section is obtained by integrating over m:

Mmax 87 %m3a,2c?i%n, exp (—2%2p,Ak)
ff — f ~ f e 0 ,
o ff = fmmm o (m)dm = s Pk > 1. 37
In the integral, we have assumed m ~ m and my,, > Wy, = 1.
In case (b) where both poAk « 1 and p;Ak «< 1, from equations (29) and (25)
o 12 2o 2
= G (i, )
By again following the procedure which leads to equation (36) we now obtain
16727 "2 2h2%c?n,
o, "(m) —raear W . (39)
The total cross-section is given by
ot = f " o (mydm . (40)
Mmin

This integral contains the two limiting cases of p,Ak « 1 as m ranges from m,;, to M., (i) A range of m where
palk <« 1; (ii) a range where p;Ak > 1. Since prAk ~ 1 when m =~ m =~ [2(p,Ak)?] "1, equation (40) can be
conveniently rewritten when p;Ak « 1 as

1/12(p0AK)2] Mmax
o)t = f o E(m)dm + f o (m)dm , 1)

Mmin L/[2(098k)2)

where the first integral contains the case pz Ak « 1 and the second integral contains the case p; Ak > 1, and where
the appropriate limiting form for the integrand is

16727 20, 3%%c?n, [ 1 ]
In

Pzrne“‘)"‘)ﬂ2 2(P0Ak)2mmln
after the ¢,"(m) approximation for pz;Ak « 1 of equation (39) is used. The second integral is
8n°Z "2a,2h2c?n,

1
M P wwy? exp ( - W)
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after the o,*(m) approximation for pzAk > 1 of equation (36) is used. Thus for p,Ak « 1, the total cross-section
is approximately

Gy

87327 20, 2h%c?n 1 2 In (2p,%Ak?)
f ~ ! e — _ 0 .
= T pan” [e"p ( 2”2po%k3) 7 )

When E is parallel to H, the cross-section for free-free absorption should be just the field-free result, since H
does not influence the motion of the electrons in this case. The matrix element for the absorption can be written

o eAdobdk _ "y i
MI[ - Mycw <0, ]m], k [(Vm Vn) leo, [ml’ k> (43)
with
g _ 4oy i = eri ~iot
Hiny, = me ¢ o medz®
From equation (23) it then follows that
ed Ak,
R Al (“4)

For a typical neutron star, H ~ 5 x 102 gauss, T < 108 ° K, so

podk ~ 0.1 « 1. (45)
In this case,

8Z 1%, 2c%n, exp (— 2%%p,Ak)

g urf pobk«1 m, Pzwa (46)
which may be compared to the field-free result (Schwarzschild 1958)
16Z "2n%a *h%c?n,

70) = =g )

where g, is the Gaunt factor, of order unity.
The ratio of the cross-section for free-free absorption of photons with electric field polarization perpendicular
and parallel to the magnetic field is
2 m2w? Jﬂ[
TRRARE N y

o."(m) _
oyft(m) —

If we evaluate the matrix element of equation (44) for the various limiting cases of poAk > 1, poAk < 1, we

obtain (Lodenquai 1972)

lef
M][If

% In k' Vlk> | - 48)

0,) o .
auff(m) - sz H PoAk > 1 M (49)
~ (wlwr)?In-2(2), poAk < 1. (50)

Thus to a factor of order unity ¢, ~ (w/wy)? times the free-free cross-section in the absence of a magnetic field
in both regimes. This same result also obtains from a completely classical calculation of these same processes.

V. BOUND-FREE TRANSITIONS

The properties of bound electrons in atoms in superstrong magnetic fields are quite different from the field-free
case (Cohen, Lodenquai, and Ruderman 1970). For example, the ionization energy I of the outermost electron
for an atom with atomic number Z ~ 10-20 in a field H = 2.2 x 102 gauss is very approximately given by I =
160 eV + 140 In Z. The wave function of a bound electron in a given m state was approximated by (apart from
normalization constants)

= eimogimlizg=2i2f (7) = ,0, - |ml, ko, D

where f,.(z) = («,)'? exp (—o,|z]) and o, is a numerically determined variational parameter. Equation (51)
assumes that the Coulomb field of the nucleus affects only the z-component of the electronic wave function in a
superstrong magnetic field (Schiff and Snyder 1939). It is the transverse localization of the electron about the
nucleus (situated at the origin) by the magnetic field that is responsible for the increased ionization energy. The
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atoms in the superstrong magnetic field are cylindrical in shape with the axis of the cylinder along H. If H ~ 2 x
10*2 gauss, the ratio of the length to the radius of the hydrogen atom is about 10.
The Hamiltonian for bound-free transition is again given by

A Z'e?

HzHH—(_Z;—'l_'—p—z—)m—I_ﬁmt, (52)
and the matrix element for bound-free transition
M = [ b BV, (53)

where iy, ¥ are the initial and final wave functions, respectively. The final state . is a continuum wave function,
but not a plane wave along z because of the Coulomb perturbation by the nucleus.

The perpendicular electric field matrix element for bound-free transition from the initial state |0, —|m], k;> to
the final state |0, —|m'|, k"> is

iwer

M. —
+ ¢

<0> - lml + 1’ k,‘p Cos (MO, _lm[’ k1>

= 22240 0, —fm] + 1]p cos 410, ~ Im><k ks

_ iwer _].’21_}. 1j2 ’
_ fuedy ( 4 ) kS, (549)
where use has been made of equations (17) and (20a). In Appendix B, an estimate of <k'|k,> is shown to give
, 2Z'e% (a,\ 12 0
Wiy = =222 (%)™ 2 Klelon) (55)

where L is a normalization length for the free electron in the magnetic field and || = (k2 + «,2)!2. Under
typical conditions of temperatures and magnetic field strengths in neutron-star atmospheres k’ < «,, and poo,, < 1.
We assume, therefore, that |o|p, « 1 where the maximum value of m is approximately Z, the atomic number of
the nucleus. Then equation (29) applied to equation (55) gives

, Z'e ()12
<k iki>—W(‘E) . (56)
Therefore,
v L iZ'e Ay [ oy V2
ot e () D

and the cross-section for the absorptive transition from a given initial m state is

8nZ %o la,fic?

b -
o) = ST (8)
The total cross-section is
Tmax 87Z %o lhe e, In Z
bf A~ bf — i m .
o B ~ fmmm o M (m)dm = — (59)
where {«,}, the mean value of «,, is given by
z
o
epInZ =) —=dm 60
{am) T (60)
(assuming mpyy, = 1, My = Z).
In the field-free case, o°(0) is approximately (Schwarzschild 1958)
8mwa,°Z "*m,ct
abf(o) - 7Taf38/2hw3 ot , (61)
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where gy is the Gaunt factor for the bound-free transition. From equations (59) and (61) we have

o M(H)[o"(0) = o?foyey’, (62)
where

' _ (4 Z"Yc*pamm,gue .
332 1n Z'{«,}h?

If H > 10" gauss, we can use the results of Cohen et al. (1970) for the computed set of «,, to show that wy & wy’
(Lodenquai 1972). Then equation (62) is roughly equivalent to

o, " (H)[™(0) % (w]wg)® . (64)

VI. BOUND-BOUND TRANSITION

wy

(63)

The Thomson, free-free, and bound-free transitions are usually the three most important contributions in
calculations of the opacity of stellar atmospheres. However, because of the huge magnetic fields and high tem-
peratures existing in the atmospheres of neutron stars, it is not obvious that the bound-bound transitions do not
make a significant contribution. An argument for a large bound-bound contribution is as follows: An atom with
a thermal velocity vy, crossing a magnetic field H will experience an electric field e (in its center-of-mass frame)
given by

€= ”_Zh x H (65)
with
v ~ GKTJAM )2 (66)

where k is Boltzmann’s constant, T the temperature, M, the proton mass, and A the atomic weight of the nucleus.
Then the maximum ““induced” electric field is approximately

€max =~ (3kT/AM,)"2H]c . ©7
IfT ~ 10"°K and H ~ 5 x 10'2 gauss, then
€max ~ 2.5 x 1024 -2 yoltscm ™1 . (68)
For hydrogen, 4 = 1 and
emex(H) = 2.5 x 102 voltscm 1 ; (69)
for iron, 4 = 56 and
emax(Fe) =~ 3 x 10* voltscm 1, (70)

We shall estimate to what extent the shift in energy levels due to these very large and varying fields will appreciably
broaden the spectral lines of the atoms in superstrong magnetic fields. If the energy difference between adjacent
levels covers a sufficiently wide spectrum, then a wide spectrum of radiation could be absorbed, thus making a
significant contribution to the opacity. We again assume the uniform H field to be along z. We can choose the
vector potential ‘

A= A4,j=Hx + 1), 1)
where I' is an arbitrary constant, a choice which gives
(VX A),=H, V:4=0. (72)
The total Hamiltonian for the electron in this gauge is
r 1 e 2 p.2+pt _Zé
H = T [py p (Hx + I’)] + TR eex p;
_p e 5. — _Ze et 2
= S " e (Hx + D)p, — eex + Tt (Hx + T)
p2 ) el' e2HT'x = €I Ze?
= 21;18 — WygXPy — m_ecpy + Imwy?x® + mc? 2m.c? — eex — v (73)
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The electric field ¢, given in equation (65), ranges from zero, when vy, is parallel to H, to v, H/c when v, is trans-
verse to H. We have defined p by

PP =B+ B+ B2
Since I' is an arbitrary constant, we can choose it such that e2HT'xm,c? = eex, i.e.,
I' = myc%/He. (74)
Then the Hamiltonian reduces to

i p? 5 el’ + I 2x? 4 L a el’ 2 Ze?
= —w - e Y w _— = — —— e ——
2m, aXPy = e Py T M 2m,c? r E me ™ T 2mye? r

where
o [32
Hy = 2m,

— wyxp, + Imwy®x?

is just the Hamiltonian of an otherwise free electron in an external magnetic field, with the vector potential
A= A,j= Hxj.
We assume known the exact solution of the Hamiltonian

- Ze? | el
Hy — =+ 5> (76)
and treat eI'p,/m,c as a perturbation. The solution to equation (76) is essentially that for an electron in the presence
of the Coulomb field of the nucleus and a uniform external magnetic field, which gave rise to the ““cylindrical™
atoms that were treated by Cohen ef al. (1970). The only difference is the constant e2I'?/2m,¢? which introduces
the same shift to all the energy levels. We have taken the perturbation to be (eI'/m,c)p,, with a maximum of

I:Immé1> = (er/mec)ﬁy = vthﬁy . (77)

To second order, the maximum shift of the mth energy level is

<m[py|1><1]py[m>
AE,® = py 78
2 E — E, (78)

where [ refers to the intermediate states. (We note that, because of symmetry of the ““unperturbed” solution,
{m| p,|m) is zero.) For the ground state, we can bound AE,® by

AE® = o Z l<0|17y11>|2 Vi <E(‘)IP;1/2|E§> (79)

with <0} 5,%|0> ~ dmfiwy. For iron at T ~ 107 °K and H ~ 5 x 102 gauss, vy, ~ 107 cm s™%, and E; — E, ~
102 eV. Then AE, ~ 3 eV. The maximum relative shift between the m = 0 and m = 1 levels, i.e., |AE, — AE,],
should be of this order or as will be shown below even smaller. (The minimum net shift due to € is of course zero,
corresponding to vy, parallel to H.)

We consider now the shifts between adjacent levels for levels with large m. We have for the net maximum
difference between adjacent energy levels from equation (78)

Km|p, D2 [<m = 1]5,|D|?
AE.® — AE, @ = p,? Z [EIW) —-—yE,,,(]O) N [EI(O) — E,:- 1(0|) . #0)

The leading terms in AE,®, AE,,_® are contributed by the matrix elements with adjacent levels. For these leading
terms, equation (80) reduces to

AE,® — AE,_,® ~ vthz[(]<m’ﬁy]m + D)2 _ [<m| p,|m — 1>|2)

Em+1(0) - Em(O) Em(O) - Em—l(O)
. l<m _ 1|ﬁv|m>|2 _ I<m _ ”ﬁylm - 2>]2 81
E,© — Enp_© E,{® ZE, ,©® ) ( )
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In the superstrong field limit, a generalization of the formula of Haines and Roberts (1969) for the energy of the
mth level (without screening) is

[+4
Em(O) >~ ZzERy In? (n’llToZPo) . (82)
For large m, the maximum separation between adjacent m levels is then
OE,» ZZ2E, o
@ = F O _ © ~ ZEm " Ry 0 ]
AE,® = E, E, @~ s In (m”zZpo) (83)

We use this approximation in the denominator of equation (81) and approximate
[Km|pylm — D|* < [Km|py|m>|? ~ Imfiwy . (84
Then from equation (83) we have the approximate bound to the m dependence:
AE,® ~m~lnm.

Then the leading m dependence of equation (81) is at most given by

0 m 0 m-1) 0?2 m _
@ _ @ N B R ) V|~ L 1 2}-1

|AE, AEy @] [am <1n m) om (ln (m — l))] - om? [ln m} o [mlln m)"17*, ®3)
and we see that the net shift between adjacent levels for large m decreases at least as fast as [m{In m)?]~ 1. Since the
contributions from the lowest levels were shown to be small, the contributions from the large m levels should be
even smaller.

Relative to ep,, ~ 102212 eV, the potential difference across an outer atomic orbital, there is only a very small
shift between adjacent levels of our “cylindrical” atoms. We note that if the atom consisted of just two levels,
we would get the expected large shift in the presence of the e field. However, in fact, there is an infinite number
of levels. A given level tends to be shifted away from its adjacent levels by the e field. Since there are adjacent
levels above and below the level under consideration, the shifting tendencies are in opposite directions, and quite
effectively cancel out each other in this case. This strong-magnetic-field case is mathematically quite similar to the
problem of a charged simple harmonic oscillator in an external electric field. The Hamiltonian in that case is

N hz d2 2 hZ dz 2 2
= e — = -2 11 -

H > + imw?x? — Fx S I + tmw?(x — x,)* + const.,

where x, = F/mw? = constant. The Hamiltonian has the pure oscillator form, but with a shifted equilibrium
position. However, the difference between energy levels is still Ziw since all the levels are shifted by the same constant
amount.

If we were to treat hydrogen atoms instead of large-4 atoms as we did above, vy, would be greater and AE,
would be small, each tending to increase the fractional shift between adjacent levels. So for hydrogen we might
expect a large relative shift in the energy levels under the conditions existing in neutron star atmospheres. Such a
shift in energy levels can be so large as to cause the hydrogen atoms to be ionized.

APPENDIX A

DERIVATION OF EQUATION (20)
Equation (20a) can be obtained as follows. We have

<0, _"lm‘ + 1, k’IPCOS ¢lnm _lm[, k">

= (k'[k"}(cn"’ _|mlCo,—lm[+1)1/2fw e-é‘g(lﬂﬂ—1/2)51'"“2F(—np, lm[ + 1, 5)51/2d§
_ Sk’k”(cnp,—l"‘lfo,_[ml+1)1/2fw e M F(—n,, |m| + 1, §)dE . (A1)
Now
® —esm - ml (=)=I(m[ + DA — )% B G '
fo e EMF(=n,, m| + 1, )dé = J_5, jm ™ = (Jml + D(qm] + 2)---(m| + n, — 1) dx (A2)
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(Landau and Lifshitz 1965). This integral is zero unless n, = 0 in which case we get
J]m]o_]m]+1 = [m]' . (A3)
Therefore
0, —|m| + 1, k'|p cos ¢|n,, —|m|, k"> = 8;4n8,, o(|m][)"?, (A4)

where we have put in the values of the normalization constants.
Similarly, to obtain equation (20b) we have

(s —|m] + 1, K"l cos $[0, — |m], k> = <k"lk>(c"°"'"';“c°"""’)”2 [ emsemrn, i), 0. (a5)
0

Now
f e H M E(—ny, |m|, OdE = Ty iy = |m], =0,
0
=—(m -1, =1,
=0, otherwise , (A6)

where we have used equation (A2).
APPENDIX B

DERIVATION OF EQUATION (55)
We consider the matrix element

Wiy = [ gur@rutrds (B1)

where g,(z) is the z-component of the continuum wave function, with angular momentum m’. With the approxi-
mation of Schiff and Snyder (1939) we have for the Schrédinger equations for f,,(z) and g, *(z):

T L) 4 o @) = ~|Balfat2) )
Z__nii; dz;—zlz(Z) + Uf(Z)gm»*(Z) = E;c»gm:*(z) . (B3)

where Ej is the binding energy of the bound electron. If we multiply equation (B2) by g,.*(z) and equation (B3)
by fx(2), subtract the two, and then integrate over z, we get

;’Zj J _w ® [f'"(z) dz—d-";:(iz — &n*(2) %‘gz—)]dz + fio [v,gm,*(z)fm(z) - vif,,,(z)g,,,'*(z)]dz

[ BA@8 @) + I A@s Oz (B

ie.,
T | V@ - s @V + [ = 0 = Bt B [ gt
(BS)
Now
S [fm(z)vzzgm’*(z) - gm'*(z)vzzfm(z)] = Vz'[fm(z)vzgm’*(z) - gm’*(z)vzfm(z)] . (B6)
o
J; [fm(z)vzzgm’*(z) - gm'*(z)vzzfm(z)]dz = 0
in equation (B5) since f,,(+ ) = g,..(+ o) = 0. Equation (B5) then reduces to
[ awr@n@iz = o [7 0 - wenrsneE. ®7)

since for photoelectric absorption, |Ep| + E,. = #w. On the right-hand-side of equation (B7) we can now take
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2n(2) to be a plane wave, and f,,*(z) = f,.(z) = exp (—an|z]) even though they are not orthogonal and cannot
be used directly in evaluating the left-hand-side of equation (B7). Then

, W . 1 - 1,2 o] oy '
Wik = [ gt = oo ()" [T - wexp (ks = 2. (89)
Now
Z'e? Z'e?
s L
where
m = _Iml s m = _lmi +1, Pm = (2Im‘)1/2P0 »
and therefore
v — v, > —~Z'e? o 1 . (B9)

m @ ¥ )
Therefore equation (B8) becomes

an\12 9 ® exp(—ik'z — an|z]) _  2Z'e® (an\12 O
L) ) . @t - he \L) amolelen) (B10)

'k ~ '*Zﬁ: (

when we have used equation (27). In the above we have defined

o] = (K2 + o212, (B11)
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